CELLULOSIC MATERIALS AS POLYMER ELECTROLYTE MEMBRANE IN FUEL CELL APPLICATION
نویسندگان
چکیده
منابع مشابه
Advanced Materials in Polymer Electrolyte Fuel Cells
Polymer electrolyte fuel cells (PEFCs) have attracted much interest due to the need for an efficient, non-polluting power source with high energy density for vehicles in urban environments, as well as portable electronics [...].
متن کاملOptimization of Polymer Electrolyte Membrane Fuel Cell Performance by Geometrical Changes
Three-dimensional computational fluid dynamics in house-code of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been developed. The conservation equations are numerically solved using finite volume technique. One of the important goals of this research is the investigation of the variation of bipolar plates width effect on the fuel cell performance compared with the conventional m...
متن کاملThe Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell
The design and operation of a differential polymer electrolyte membrane (PEM) fuel cell is described. The fuel cell design is based on coupled stirred tank reactors (STRs) coupled through a membrane; the gas phase in each reactor compartment is well mixed. The characteristic times for reactant flow, gas phase diffusion, and reaction were chosen so that the gas compositions at both the anode and...
متن کاملEffect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell
There are several obstacles to the commercialization of PEM fuel cells. One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...
متن کاملModeling and Simulation for Fuel Cell Polymer Electrolyte Membrane
We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JURNAL SELULOSA
سال: 2016
ISSN: 2527-6662,2088-7000
DOI: 10.25269/jsel.v2i02.32